Universal Z-lattices of Minimal Rank

نویسندگان

  • BYEONG-KWEON OH
  • David E. Rohrlich
چکیده

Let UZ(n) be the minimal rank of n-universal Z-lattices, by which we mean positive definite Z-lattices which represent all positive Z-lattices of rank n. It is a well known fact that UZ(n) = n + 3 for 1 ≤ n ≤ 5. In this paper, we determine UZ(n) and find all n-universal lattices of rank UZ(n) for 6 ≤ n ≤ 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fifteen theorem for universal Hermitian lattices over imaginary quadratic fields

We will introduce a method to get all universal Hermitian lattices over imaginary quadratic fields Q( √ −m) for all m. For each imaginary quadratic field Q( √ −m), we obtain a criterion on universality of Hermitian lattices: if a Hermitian lattice L represents 1, 2, 3, 5, 6, 7, 10, 13, 14 and 15, then L is universal. We call this the fifteen theorem for universal Hermitian lattices. Note that t...

متن کامل

Universal lattices and unbounded rank expanders

We study the representations of non-commutative universal lattices and use them to compute lower bounds for the τ -constant for the commutative universal lattices Gd,k = SLd(Z[x1, . . . , xk]) with respect to several generating sets. As an application of the above result we show that the Cayley graphs of the finite groups SL3k(Fp) can be made expanders using suitable choice of the generators. T...

متن کامل

On residuated lattices with universal quantifiers

We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...

متن کامل

Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in Q( √ −3) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3. In 1978 W. Feit [10] classified the unimodular hermitian lattices of dimensions up to 12 over the ring Z[ω] of Eisenstein integers, where ω is a primitive third root of unity. Th...

متن کامل

Almost-minimal Nonuniform Lattices of Higher Rank

Need to do:. • Rewrite the section on triality groups. • Verify that Z ⊂ M q in proof of 6.5. ([PR] says it's true on p. 385.)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999